Predictive analytics using statistical, learning, and ensemble methods to support real-time exploration of discrete event simulations
نویسندگان
چکیده
Discrete event simulations (DES) provide a powerful means for modeling complex systems and analyzing their behavior. DES capture all possible interactions between the entities they manage, which makes them highly expressive but also compute-intensive. These computational requirements often impose limitations on the breadth and/or depth of research that can be conducted with a discrete event simulation. This work describes our approach for leveraging the vast quantity of computing and storage resources available in both private organizations and public clouds to enable real-time exploration of discrete event simulations. Rather than directly targeting simulation execution speeds, we autonomously generate and execute novel scenario variants to explore a representative subset of the simulation parameter space. The corresponding outputs from this process are analyzed and used by our framework to produce models that accurately forecast simulation outcomes in real time, providing interactive feedback and facilitating exploratory research. Our framework distributes the workloads associated with generating and executing scenario variants across a range of commodity hardware, including public and private cloud resources. Once the models have been created, we evaluate Email addresses: [email protected] (Walid Budgaga), [email protected] (Matthew Malensek), [email protected] (Sangmi Pallickara), [email protected] (Neil Harvey), [email protected] (F. Jay Breidt), [email protected] (Shrideep Pallickara) Preprint submitted to Future Generation Computer Systems August 13, 2015 their performance and improve prediction accuracy by employing dimensionality reduction techniques and ensemble methods. To make these models highly accessible, we provide a user-friendly interface that allows modelers and epidemiologists to modify simulation parameters and see projected outcomes in real time.
منابع مشابه
Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملScaling, Modeling and Traffic Control of a Real Railway Network using Max-plus Algebra and Model Predictive Control
Delay time recovery can increase the efficiency of the railway network and increase the attractiveness of railway transport against other transportation systems. This article presents a new dynamical model of railway system. The proposed model is a discrete event systems that is defined based on the deviation of travel time and deviation of stop time of trains. Due to the existence of multiple ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Future Generation Comp. Syst.
دوره 56 شماره
صفحات -
تاریخ انتشار 2016